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The remarkable results of Everhart et al. in observing resonant charge exchange in wide angle (small 
impact parameter) ion-atom collisions, are discussed in terms of the well-known impact parameter method. 
It is shown that previous theories based on adiabatic potential curves are inconsistent with the results of 
He+-He experiments. However, experimental results are correctly predicted from a Heisenberg representa
tion consisting of the basis set of single configuration wave functions built up from molecular orbitals 
(independent-particle model). This set includes virtual (autoionized) states. In this representation, the 
collision can be assumed to be adiabatic except for very short or very long collision times. The case of double 
charge exchange is treated, and it is shown that a three-state approximation is required. The presence of 
phase shifts in empirical equations is a result of the breakdown of interference at zero-collision time. Damping 
is discussed. The results include the work of previous authors and are general enough to include new cases. 
In particular, charge exchange in He++-He, Li+-Li, and Li++-Li collisions is discussed and predictions of 
experimental results are made. 

I. INTRODUCTION 

RECENTLY, Everhart et a/.1-3 discovered a remark
able experimental result in large-angle symmetric, 

ion-atom scattering. For these collisions, it can be 
shown3 from classical orbit theory that the distance of 
closest approach of the nuclei is small compared to 
atomic sizes. The electron capture probability plotted 
versus incident ion energy shows several pronounced 
peaks in the symmetric cases of H++H and He++He 
collisions (Fig. 1). The present paper is a theoretical dis
cussion restricted to these wide-angle, zero impact 
parameter collisions. 

A. History 

The basic theory of charge exchange stems from the 
work of Heisenberg,4 who introduced the concept of 
resonance in connection with the discussion of the 
excited states of the helium atom. This well-known term 
arises from the analogy between the quantum-mechani
cal system of two degenerate states and the classical 
system of two oscillators of the same frequency which 
are coupled together. Pauling5 and Finkelstein and 
Horowitz6 applied this concept to the stationary states 
of the H2

+ molecule, the simplest example of resonance.7 

H2+ was viewed as a system of a hydrogen atom (Ha) 

* Alfred P. Sloan Foundation Fellow. 
1 For a discussion of H + on H see G. J. Lockwood and E. Ever

hart, Phys. Rev. 125, 567 (1962). 
2 For a discussion of He + +He see F. P. Ziemba and E. Everhart, 

Phys. Rev. Letters 2, 299 (1959). 
3 A summary of experimental results and some of the theory 

underlying these experiments is presented by F. P. Ziemba, 
G. J. Lockwood, G. H. Morgan, and E. Everhart, Phys. Rev. 118, 
1552 (1960). 

4 W. Heisenberg, Z. Physik 39, 499 (1926). 
6 L. Pauling, Chem. Rev. 5, 173 (1928). 
«B. N. Finkelstein and G. E. Horowitz, Z. Physik 48, 118 

(1928). 
7 For an extremely simple discussion of these matters see L. 

Pauling, The Nature of the Chemical Bond (Cornell University 
Press, Ithaca, New York, 1960), 3rd ed., pp. 14-19; see also 
L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics 
(McGraw-Hill Book Company, Inc., New York, 1935), pp. 
327-331. 

and a proton (H6+). (HaH&+) is degenerate with 
(Ha

+H&). Two stationary states, split by an energy E, 
exist for the molecular ion at finite internuclear dis
tance : One wave function is a symmetric sum of the two 
degenerate wave functions; the other is antisymmetric. 
HJ3&+ is not a stationary state of the total system, since 
it is a mixture of two stationary states. The total wave 
function oscillates sinusoidally between the extremes of 
Ha

+H& and HaH&+ with a charge exchange frequency of 
E/h. Bates, Massey and Stewart8 applied these simple 
ideas to atomic charge exchange collisions. They applied 
the impact parameter method9,10 (IPM), in which it is 
assumed that the nuclei move in classical orbits, such 
that the stationary electronic states are well defined at 
each instant of the collisions. Since these stationary 
states and their corresponding energy eigenvalues are 
known, one can solve for the probability of charge 

FIG. 1. Experi
mental results for 
charge exchange in 
wide angle scatter
ing ; P 0 is probability 
of the incident ion 
being scattered as a 
neutral particle; Pi is 
probability of being 
scattered as a doubly 
ionized atom (refer
ences 1, 2, and 14). 
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8 D. R. Bates, H. S. W. Massey, and A. L. Stewart, Proc. Roy. 
Soc. (London) A216, 437 (1953) (see especially pp. 453-456); see 
also O. B. Firsov, Zh. Eksperim. i Teor. Fiz. 21, 1001 (1951); see 
also T. Holstein, J. Phys. Chem. 56, 832 (1952). 

9 N. F. Mott, Proc. Cambridge Phil. Soc. 27, 553 (1931). 
10 W. Kohn, Phys. Rev. 90, 383 (1953). 
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0 ~ \ 
Internuclear Separation 

FIG. 2. Crossing 
of potential curves. 
Two potential curves 
for the states s' and 
s may cross in a cer
tain approximation 
(such as in a single 
configuration molec
ular orbital theory). 
In a higher approxi
mation, the curves 
repel each other. If 
the atoms approach 
each other slowly in 
state s, an adiabatic 
transition from s to 
s' will occur. If they 
approach each other 
rapidly, a diabatic 
transition from s to s 
will occur. 

dependent Schrodinger equation (in atomic units)14 is 

exchange in wide angle proton-hydrogen atom collisions, 
where the experimental results agree with theoretical 
calculations.11 However, in the more general case of 
more than one electron, the problem is unsolved. Reso
nant charge transfer in wide angle scattering for many 
electron systems is the subject of this paper. 

II. GENERAL THEORY 

A. The Impact Parameter Method 

The IPM8 - 1 0 is based on the assumptions: (1) the 
nuclei move in classical orbits derivable from a poten
tial; (2) the wave function of the total system is ex
panded in an adiabatic Heisenberg representation; that 
is, a set of stationary state wave functions and energies 
exist at all internuclear distances for each electronic 
state of the molecular system of atom plus ion. Assump
tion (1) holds best at the high-energy limit where the 
potential energy of the two nuclei is much larger than 
the total electronic energy. This corresponds to the case 
of impact parameters which are small compared to the 
dimensions of the atoms. For the case of bigger impact 
parameters electronic screening must be considered. 
Then assumption (1) loses force, since one cannot speak 
of an internuclear potential when the wave function con
sists of a mixture of stationary-state wave functions, 
each of which has a different energy eigenvalue. Some 
success has been achieved with a screened Coulomb 
potential.1,12-13 However, due to the lack of theoretical 
justification it should be considered only useful in 
representing empirical data. In the present case of wide 
angle collisions between light atoms and ions (hydro
gen or helium) at experimental energies (1-100 keV), 
electron screening plays a small role, and assumption 
number (1) of the IPM is well justified. The time-

11 See reference 1. However, there are some terms in the empiri
cal equation for the data which are theoretically unexplained. 
These are discussed in a later section of this paper. 

12 E. Everhart, G. Stone, and R. J. Carbone, Phys. Rev. 99,1287 
(1955). 

13 G. H. Lane and E. Everhart, Phys. Rev. 117, 920 (1960). 

3Q& = i(d¥/dt), 

where 5C is the Hamiltonian 

1 

(1) 

ZAZB N 
36= ZA L 

R =1 \Qi— R j 

N 1 

ZBT,-
*-I l ^ - R i 

+E (2) 
i>i | 0 t — 0j | 

and ^ is the total wave function of the molecule 
(atom+ion) 

^ = L s cs(t)Xs(R,QhQ2,' • • QN), (3) 

where R= | R| = | R#—R^| is the internuclear distance, 
the 0i, 02, 03* • • 9N; R^, R# are the coordinates of the N 
electrons and nuclei of the molecule, respectively, and 
the Xs are solutions of the stationary-state Schrodinger 
equation 

3CXs=epcs. (4) 

The solution to (1) for R not constant is given to zero 
order8'15 by the adiabatic approximation: 

c.(t) = c.(-*o)exp(-i[ es(RZt'J)dA (5) 

where the es are the eigenvalues of (4). 
To take account of departures from adiabaticity to 

first order, it is necessary to discuss the time dependence 
of the Xs functions. Then one obtains a time dependence 
of the coefficients cs(T). This is given by the 
expression8,15 

dcp(t) f f dX.[R(0,ffi(0] 
- = - E W O ^,[R(/),0,(O]-dt 85*p dt 

XexJ-ij {estR(m-ePlR(t')l)dA^, (6) 

where dz denotes integration over the electronic vari-

14 Atomic units will be used throughout this paper: 

1 a.u. of energy=fxei/h2 = 2EH = 27.2 eV. 
1 a.u. of length = ao = h2//jie2 — 0.53 A. 

1 a.u. of velocity ==e2A = 2.18X108 cm/sec. 
1 a.u. of time = hs/fxei = 2.42 X10~17 sec. 

It is useful to note that the energy of an ion in atomic units is given 
by the relation 

E = imV2 = iXlS36MV2. 

Since 1 a.u. = 2.72X10"2 keV, E(keV)=25MV2, where M is the 
atomic weight and V the velocity in a.u. Typical experimental ion 
velocities range from 0.1 to 1 atomic unit (see Fig. 1). In atomic 
units, the angular charge exchange frequency is oi = 2irv=E) where 
E is the energy separation between the stationary states. 

15 L. I. SchifT, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955), 2nd ed., pp. 213-216. 
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ables pi, 02* • • 0JV. Taking the time integration of (6), 

Acp= 
/•+0° r dXs 

•-- I dt £ cs(t) d<zXp 

7_oo **P J dt 

Xexpl-if (€.-e,)A ,l (7) 

This can be seen to be similar in form to a Fourier 
integral. In analogy to Fourier theory, (7) is small if the 
collision is so slow that the time variation of the 
expression preceding the exponential factor contains few 
frequency components as high as the argument of the 
exponential function. This can be seen to be merely an 
expression of the uncertainty principle (in a.u.) 

AEA*«1, (8) 

where AE is the uncertainty in energy of a given state 
and A/= T is the duration of the collision. A convenient 
measure of the effective range of interatomic forces is 
the quantity X 

[€,(£)-€ a(£)]m a x \= f [€.(tf)-€a(29]d* = — , (9) 
Jo 2 

where es and ea are the energies of the symmetric and 
antisymmetric states involved in charge exchange. In 
the special case that 

es(R)-ea(R)^e0e-aR
y X=l/a. (10) 

It is reasonable to assume in the present case of zero 
impact parameter, that 2\^vT, where v is the relative 
velocity of the colliding nuclei. Then expression (7) 
becomes 

2\AE>v. (11) 

This defines the velocity for which diabatic behavior 
occurs. 

An example of this relation occurs when two potential 
curves cross16 (Fig. 2). The role of curve crossing be
comes apparent in later paragraphs. It can be shown 
(see Appendix) that the crossing or noncrossing of 
potential curves is closely related to the damping of the 
resonance, and that (11) holds equally well for diabatic 
crossing of potential energy curves. 

B. Diabatic Behavior 

The major consequence of the deviation from adia-
batic behavior is the breakdown of the two-state ap
proximation. It often occurs that at least one of these 
states lies near in energy to a large number of other 
states of the same parity. By examining the examples 
given in succeeding sections (III C.l-ffl C.2) it can be 
seen that the total width 2F of the band of states 
involved usually amounts to only a few electron volts 

16 L. Landau, Physik. Z. Sowjetunion 2, 46 (1932); E. C. G. 
Stuckelberg, Helv. Phys. Acta 5,369 (1932); C. Zener, Proc. Roy. 
Soc. (London) A137, 696 (1932); D. R. Bates, ibid. A257, 22 
(1960). 

(—0.1 a.u.). By the uncertainty principle (7), in colli
sions lasting for times less than «10 a.u. the total elec
tronic energy is uncertain by this amount. However, in 
these experiments1-3 typical velocities are of the order 
of 0.1-1 a.u., typical interaction lengths ^ 2 a.u. and, 
therefore, typical collision times «2-20 a.u. Thus, it 
must be assumed except for the lowest velocities, that 
the total wave function must include a mixture of elec
tronic states lying in a band within a few electron volts 
of the state involved. Since the effect of mixing in ad
ditional states destroys interference, it does not appear 
unreasonable to take the width 2T as a measure of the 
damping of the resonance in charge exchange. (See 
Appendix.) 

The frequency of charge exchange is given by the 
elementary relation a>=E=(es—ea) in atomic units.14 

For a sharp, undamped resonance, there is the familiar 
relation 

CO €8—€a 

- » 1 . 

Thus, resonant charge exchange occurs most favorably 
when the ratio of energy splitting between symmetric 
and antisymmetric states to the width of the bands of 
competing states is large. 

C. The Limit of Zero Collision Time 

When the collision time is short compared to one 
period of resonant charge exchange, the width of any 
state is large compared to the separation of the inter
fering states, interference is destroyed totally, the final 
wave function becomes a 50-50 mixture of the two 
charge exchange states, and the electron capture proba
bility is 0.5. Lockwood and Everhart1 used an empirical 
equation to represent the experimental data for reso
nant charge exchange of the form (in a.u.) 

'(Ea) 
P0=#i+#2sin2[ 

(12) 

where Kh K2 are slowly varying functions of reciprocal 
velocity. Ideally, according to the IPM, 0=0. Everhart 
and Lockwood found an empirical value near £=7r/4. 
Under these circumstances, the empirical expression 
(12) would predict Po(v— oo) = i . Thus, the phase con
stant /3 arises from the breakdown of coherent inter
ference at high collision velocities.17 

17 At even higher energies ( « 1 MeV), the recoil velocity of the 
nuclei becomes large compared to electronic velocities. Under these 
circumstances, transfer of electronic momentum does not occur 
and the nuclei are stripped of all electrons and emerge from the 
collision totally ionized. However, these energies are well above 
the range covered by experiments so far. 

D. R. Bates and R. McCarroll, Proc. Roy. Soc. (London) A245, 
175 (1958) have modified the electronic eigenfunctions to take into 
account momentum transfer. Calculations for H+—H by A. F. 
Ferguson and R. McCarroll, summarized in a review by D. R. 
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III. DETERMINATION OF THE STATES 

Although interference between some combination of 
symmetric and antisymmetric states is necessary for 
resonant charge exchange, it is by no means clear how to 
obtain the required potential curves for these states. 
Bates, Massey, and Stewart8 gave a basic expansion in 
terms of symmetrical and antisymmetrical molecular 
wave functions, but did not specify the wave functions 
or energies. Jackson18 stated that the "two lowest 
molecular potential energy curves for the appropriate 
molecular ion should be used for calculation of reso
nance charge exchange." On the other hand, Ziemba and 
Russek19 achieved agreement with experiment for 
He—He4" collisions by assuming the symmetric and 
antisymmetric states to be separated by an energy of 
107 eV (3.9 a.u.) at zero internuclear distance. Lock-
wood and Everhart1 criticized this assumption as un
justified. They pointed out that the molecular wave 
function at R==0 is that of Be+, whose ionization poten
tial is only 18 eV (f a.u.). Presumably, on the basis of 
the criterion of Jackson, they concluded that the differ
ence in energy between any symmetric and any anti
symmetric state cannot be larger than this value. 

This contradiction lies even within the paper by 
Jackson,18 who obtained the values of the energies of the 
states at zero internuclear distance by "symmetry argu
ments from the atomic energy levels of the beryllium 
atom," which are inconsistent with his own criterion. 
It is the purpose of this section to clarify these contra
dictions and set forth an unambiguous basis for deter
mining the energies of the states required for a pre
diction of the frequency of resonant charge exchange. 

A. Nature of the Intermediate States 

First, it should be noted that a basis set consisting of 
stationary states in the molecule with fixed nuclei is not 
sufficient; nor is it necessary to use a set which corre
sponds exactly to the Heisenberg representation (states 
for which the Hamiltonian operator is strictly diagonal). 
In a representation which is built up of approximate 
wave functions, there are off-diagonal matrix elements 
of the Hamiltonian operator which cause transitions 
from one state to another. As long as the time associated 
with these transitions is long compared to the collision 
time, the approximations made have no harmful effect. 
For example, states above the ionization potential of the 
molecular system are good, since autoionization life
times («40-400 a.u.«10-14-10"15 sec)20 are large corn-

Bates and R. McCarroll, Suppl. Phil. Mag. 11, 39 (1962), show 
some improvement over previous work. Nevertheless, the failure 
to account correctly for the phase shifts or for the diminished 
amplitude of the resonance indicate that these effects arise from a 
breakdown of the two-state approximation, as outlined in the 
present discussion. 

18 J. D. Jackson, Can. J. Phys. 32, 60 (1954). 
19 F. P. Ziemba and A. Russek, Phys. Rev. 115, 922 (1959). 
20 G. Wentzel, Z. Physik 43, 524 (1927); T-Y Wu, Phys. Rev. 

66, 291 (1944). 

pared to collision times (—1-10 a.u.). Thus, the role of 
these virtual states cannot be neglected. An example of 
such a state is (He)2

+(lcrff)(lcrw)2 (see Sec. IIIC.2). 
Furthermore, the adiabatic approximation (assump

tion number 2 of the IPM—see Sec. II) does not hold 
for states which are separated by energies which are 
small compared to the broadening caused by the un
certainty principle. [See expressions (6)-(8).] This 
nonadiabatic behavior is necessary to account for the 
damping phenomenon in resonant charge exchange. It 
will be shown how the adiabatic approximation gives 
completely wrong results for He+-He charge exchange. 

In succeeding paragraphs, an adiabatic Heisenberg 
representation with an approximate basis set of single 
configuration molecular orbital wave functions is set 
up and used. 

B. Molecular Orbital Approximation 

The molecular orbital, or Hund-Mulliken, approxima
tion assumes an independent-particle model in which the 
stationary states of the molecule are built up of a 
product of one electron orbital wave functions. Thus, 
the total electronic wave function can be described by 
stating the electron configuration in terms of molecular 
orbitals. At small internuclear distances (R^0) the 
molecular orbitals go over into the atomic orbitals of 
the united atom (atom formed by fusion of the nuclei 
of the two atoms which form the molecule). Since energy 
levels of the united atom are usually well known or 
easily estimated, one can obtain the energies of the 
molecular states at R=Q. At medium internuclear dis
tances (R^\) the molecular orbitals (MO) can be de
scribed fairly accurately as a linear combination of 
atomic orbitals (LCAO). At very large internuclear dis
tances (RS>X) where the MO approximation at times 
becomes inaccurate, one can specify the wave function 
of the entire system in terms of the wave functions of 
the separated atoms (Heitler-London or atomic orbital, 
AO approximation). Although these two approximations 
are quite different, it is possible to expand the basis set 
of the AO method in terms of the LCAO-MO wave 
functions. The MO approximation can be assumed to 
be reasonably accurate where charge exchange is 
effective (JR<X). 

The MO wave functions are not strictly eigenfunctions 
of the true molecular Hamiltonian. The off-diagonal 
matrix elements which connect these approximate wave 
functions (electron correlation or configuration inter
action) usually amount to a few electron volts (~ 0.1 
a.u.), and are small for collisions occurring in the energy 
range studied experimentally.1-3 For more detailed 
treatments of the AO and MO theories, the reader is 
referred to standard works.21 

21G. Herzberg, Molecular Spectra and Molecular Structure 
(D. VanNostrand Company, Inc., Princeton, New Jersey, 1950), 
2nd ed., Chap. 6; C. A. Coulson, Valence (Oxford University 
Press, Oxford, 1961), 2nd ed., Chaps. IV-VI. 
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C. Applications 

1. H2+ 

The electronic energies E&\—'5Z—ZAZB/R [see ex
pression (2)3 of the H 2

+ molecule are shown in Fig. 3 
and are summarized in Table I. 

The electronic wave function of the initial state of the 
system is 

\<jg—\au 

v2 
By expression (5) the final wave function 

= ( l < r 0 ) e x p ( - ; / egdt\ 

- (Uu) expf - i / eudt J / v2 

= expf —i I egdt J — expf —i J eudi J 

/.+00 

H expf — i / €0d/ j+expf —it eudt j 

The squares of the coefficients of Is A and ISB give the 
probabilities P 0 and P i of charge exchange or non-
exchange, respectively. Finally, 

where 

Po=CA*CA=sin2(0/2) 

P i = C 5 * C 5 - c o s 2 ( 0 / 2 ) , 

<£: 
/

+00 

-o© 

, )* . 

(13) 

(14) 

Evaluation of <j> is simplest for high velocities (zero 
impact parameter). Then R~vt, where v equals the 
velocity of the incident ion.22 Then 

(Ea) 1 /••* 
[ € w ( ^ ) - 6 , ( ^ ) ] ^ . (15) 

(Ea) 1 /*+°° 

TABLE I. Lowest states of the H2
+ molecule. 

United atom Electronic 
(He+) energy 

approximation (a.u.) LCAO-MO 
State MO (R = 0) (R=0) approximation 

Even 

Odd 

\aa 

lo"« 

Is 

2p 

- 2 
1SA+ UB 

lSA—lSB 

v2 

22 More general formulas to handle lower velocities are given 
elsewhere. (See reference 8.) 

-2 

~r 
H e " 

He+ _ = = = = — — — H++ H (n =3) 
4 ^ u - ^ ~ " - H S H (n = 2) 

H++H(n=l) 

FIG. 3. Potential curves for H+-f H. (See reference 23.) 
Only orbitals of a type have been shown. 

This result is in agreement with previous calculations,1-8 

since the adiabatic and molecular orbital wave functions 
are identical. (Ea) has been evaluated by Ziemba1 from 
the exact H24" energies23 to be 4.88 a.u., which is in good 
agreement with the experimental value of (4.45 ±0.08) , 
if one considers the simplified nature of the theory. The 
effective range can be evaluated by inserting the experi
mental value for (Ea), the value of [ew(0)—€ff(0)] = § 
a.u. (Table I) in expression (9). The result is X(H2

+) 
= 1.48 a.u. in agreement with the value of 1.5 for the 
mean radius of the charge distribution of the hydrogen 
atom,24 which is a measure of the range of interatomic 
forces. 

The weak damping of the H—H + resonance (Fig. 2) 
comes from the large ratio of (ea—es)/T= (eu—eg)/Y. 
Here, there is a single state which is far away from a 
group of closely spaced states (Fig. 3). 

2. He-He+ 

The electronic energies of the He+—He system are 
summarized in Table I I and Fig. 4. 

The electronic wave function of the initial state of the 
system (He^+Heu) is ^ i n i t = ^ ( r = — 00, R= — oo) 

23 D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. 
Roy. Soc. London 246, 215 (1953). 

24 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and 
Two-Electron Atoms (Academic Press Inc., New York, 1957), p. 17 ; 
or E. U. Condon and G. H. Shortley, Theory of Atomic Spectra 
(Cambridge University Press, New York, 1953), p. 117. 
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(au) 
Oh 

-2| 

-4 

-6| 

-8j 

-10 

-12 

-I4h 

Be4 ' He+++He++ 

He+^He+(is) 

He+++He(is)2 

He+(is)+He+(is) 
He(is)(2S)+He+(is) 
He{is)2+He+(is) 

- Be3+(is) 
Be++(is)(2i^ 

lBe+(is)(2p)2 

Be++(is£ 

Be+(isf(2p)-

Be+(isf(2S] 

_L 
1 

J L 
5 

R(au) 
10 20 40 

FIG. 4. Diabatic curves suitable for discussion of fast collisions involving He ions. These show the electronic 
energies of the He-He system for a few states of interest. To the right of the figure, at large internuclear dis
tances, the energies are those of separated atoms and/or ions. At smaller internuclear distances, the energies are 
those of a single configuration molecular orbital wave function. At R = 0, the energies are those of the Be+ united 
ion. Since these are diabatic curves, crossing of states of like symmetry is permitted, in contrast with the non-
crossing rule for adiabatic curves. (See Table II and Sec. I l l C.2 for further discussion.) Thus, there is not the 
usual adiabatic correlation between states of the united atom and separated atoms. The curves were constructed 
from calculated wave functions whenever possible, as is shown in the references. The remainder of the curves 
were constructed by plausible interpolation or by author's estimates. (He)2

4+: Zero of energy. (He)2
3+ <rg,(ru: 

Energies are obtained exactly by scaling E as Z2 and R as \/Z from the H2
+ curves (Fig. 3). (He)2

++: It is not 
possible to make a unique connection between molecular orbital and separated atom states. Here, the three 
molecular orbital (<rff)

2, (<rff) (<rM), and (<r«)2 states are visualized (dashed lines) as arising from the avoided crossing 
of theHe+-He+ curve with the degenerate He++-He and He-He++ states. (He)2

++ (<rg)
2 (R = 0.S to R = 1.S 

a.u.). [See W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (I960).] (He)2
+ {ag)-\ (cr*)-1. [See refer

ence b, Table II. For term values of united or separated atoms, see reference a, Table II. In the case of virtual 
states, energies were estimated from term values of similar ions. Also configurations containing (2pa)2 were 
evaluated from the relation E(2p<r)2 = iE(1S)=%E(1D) (see reference b, Table I I ) . ] 

~1SA(1SB)2. I t is readily proven by writing this in an 
antisymmetrized product to be equivalent to a (1SA)~1 

"hole" of the form (lag)-
1+(lan)-

1/(2)1/2. This is 
formally identical to that derived for (H2)+ (13), (14), 
and (15), except that the labels u and g must be inter
changed. Following this analogy, then one must find the 
value of (Ea), the area between the appropriate u and g 
curves. 

Referring to Fig. 4 and Table II , one can see that these 

TABLE II. States of (He)2
+. 

United a tom Electronic 
(Be+) energy-

approximat ion (R =0) 
S ta t e R° R (R=0) (a.u.) 

M O designation 
For large For small 

R° R 

Odd 
Even (diabatic) 
Even (adiabatic) 

( lovHlo-u) 
(lag) (l«r«)2 

(l«r,)(l«r«)» 

(l<r,)*(l<r«) 
(l«r„)(l<r«)s 

(Ugy{2<rg) 

(ls)H2p) 
(ls){2fi)* 
(ls)H2s) 

- 1 4 . 2 a 
- 9 . 4 b 

- 1 4 . 3 * 

* Exper imenta l value obtained from the reference by Char lo t te E . Moore, 
Atomic Energy Levels (U. S. Government Pr in t ing Office, Washington, 
D.C. , 1949), Vol. I, Na t l . Bur. S td . (U. S.), Circ. 467. 

b Calculated by the au thor from theoret ical orbital energies given by 
P . E . Phillipson, Phys . Rev. 125, 1981 (1962). 

• At R= oo, bo th (l<r0)
2(l<ru) and (lag) (lo-«)2 go to the separa ted a toms 

H e ( U ) 2 + H e + ( U ) . 

states start out as the degenerate ground state of the 
system He(l,?)2+He+(ls). At smaller internuclear dis
tances the u state becomes the lower of the two. I t can 
be described unambiguously as (1(7 )̂2(1(7W) at all inter
nuclear distances, and therefore becomes Be(ls)2(2^) at 
R=0. The g state can be described as (l<jg)(lcrw)2 for 
large internuclear distances. However at R^2 a.u., it is 
crossed by a (l<Tg)

2(2<Tg) g state derived from He + ( l j ) 
and H.e(ls)(2s). For values of R to the left of the 
crossing point, there is an ambiguity as to which g 
curve to assume for purposes of calculating (Ea). The 
adiabatic curve obeys the noncrossing rule of von 
Neumann and Wigner25 and thus becomes (la0)

2(2ag), 
which is the lower choice and is almost indistinguishably 
close to the (l(Tg)

2(lau) u state. Finally, it goes to the 
united atom state Be+(l.y)2(2s) which is lower than the 
previously described odd state Be+(ls)2(2^). On the 
basis of the adiabatic potential curve, one would expect 
a value near zero for (Ea) and, therefore, a lack of 
resonant charge exchange. This is clearly in disagree
ment with experiment. 

25 J. von Neumann and E. Wigner, Physik. Z. 30, 467 (1929). 
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The upper alternative, which will be designated the 
diabatic curve, can be described as (l(ra)(l<rw)2 at all 
internuclear distances and becomes Be+(Is) (2p)2 at 
R=0. If one uses this diabatic electronic energy curve 
of Fig. 4 (see also Table II) , the value obtained for (Ea) 
is 7.8 a.u., in agreement with the experimental value of 
(7.1=1=0.2) and the theoretical values of 7.0 and 6.6 
previously obtained, respectively by Jackson18 and 
Ziemba and Russek.19 (The disagreement among theo
retical calculations reflects small differences in theo
retical potential energy curves for the He-He4* system.) 
From expression (9), the observed value of (Ea) and 
(ea—€«)max (see Table II) , one obtains an effective range 
of 0.74 a.u. 

To obtain agreement with experiment, it is therefore 
necessary to assume that the molecular system crosses 
the interfering (lag)

2(2(Tg) curve and remains on the 
diabatic curve given by molecular orbital theory. In 
fact, one can show that the (lo-g)(lau)

2 diabatic curve 
must cross an infinite number of curves of the form 
(lag)

2(ncrg), for the experimental results to agree with 
theory. The occurrence of these crossings is consistent 
with the discussion based on the Landau-Zener 
theory.16-26 For, if one uses a reasonable value for 
AE^O. l a.u., one finds AE(2X)~0.15 a.u., which is com
parable only to the slowest collision velocity of 0.14 
(Fig. 1). 

Here again, as in H+—H, the presence of an un
damped resonance is caused by a favorable ratio of 
(es—ea)/T (Fig. 4). I t is of further interest to note that 
the (lag)(lau)

2 state is above the ionization potential of 
(He)2+ for small values of R. (See Sec. I l l A.) 

3. Other Systems: Li+—Li, Li++—Li, He++—He 

I t is of interest to extend the theory of resonant 
charge exchange to cases that are not yet investigated. 

The Li—Li+ wave function before collision is 
(1SA)2(1SB)2(2SB), which can be written as (lag)

2(lau)
2 

X(2ag-2au)/(2)1/2. At R=0, the united atom wave 
function is C+: (ls)2(2p)2(2s~3p)/(2)^2. The even and 
odd states are separated by the (2s —•» 3p) splitting, 
which is about J a.u. However, this is somewhat smaller 
than the uncertainty in energy, which is the order of the 
total splitting of the states of the C + atom (ionization 
potent ia ls 1 a.u.). Thus, conditions are unfavorable for 
a pronounced resonant phenomenon, since the oscilla
tions would be of long period and would be heavily 
damped. 

The situation is favorable, however, for Li-Li++. 
Here the initial wave function is 

Li on Li 

(Is A) (IS B)2 (2s B) 

= [(102(102} 
[ (W M ) - 1 +(lO- 1 ] [ (2^)-(2(r M ) ] 

yH v2 

0.5 
l /v(ou) 

FIG. 5. Charge exchange for Li++-Li collisions, shown for three 
values of p, the probability that the outer 2s electron is captured 
by the scattered ion. p is expected to be a slowly varying function 
of 1/v. A phase shift has been applied to make the curves connect 
smoothly to the correct limit for l/z; = 0. 

electron by p and probability of capture of a ISB electron 
by pf, it is readily shown that 

Po=pp' 
Pi=p+pf(l-2p) 
P2=(l-P)-Pf(l-P), 

(16) 

Then, denoting the probability of capture of the 2SB 
26 See Appendix. 

where PQ, Pi, and P2 are the probabilities of double-, 
single-, and nonelectron capture, respectively. As in 
Li-Li+, the term p arising from the weakly bound outer 
electron is a slowly varying, heavily damped function 
of the electron energy. The period of oscillation of p! is 
determined by expressions (13), (14), and (15), where 
(Ea) is largely determined by the separation between 
the even and odd states of the (Li)23+ core. Although 
detailed calculations for this molecule are not available, 
estimates can be made by a simple scaling procedure. 
I t is remembered that (Ea)==2\(AE)ma^, that X a 1/Z 
and ( A £ ) m a x a Z 2 ; therefore (Ea) a Z. Then, (Ea) for 
(Li)2

3+ should be i(Ea) for isoelectronic (He)2+. Thus, 
the predicted value for (Li)2

3+ is (Ea)~ 3.5Z=10.5. 
Curves for P0 , Pi, and P2 are shown in Fig. 5. 

In the case of He+ +-He collisions, the initial wave 
function is 

(cru—<jg)(<ju—Vg) 
* C H e - * + - H e ) = ¥ M = (lsB)2= 

2 
(au

2 + ag
2) ((Tg(TU+(JU(Tg) 
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FIG. 6. Charge exchange for He+ + on He. A phase shift has been 
added to make the curves join smoothly to the correct values for 
l/2/=0. Also, for simplicity of calculation, {EO)NV has been as
sumed to equal {Ea)vz. 

This wave function is seen to be a superposition of three 
MO states, 

^N tyv ^z 
*BB = " + — , (17) 

2 v2 2 
where 

1 
^N = <Tg2, ^V = (<rg(ru+(ru<rg), ^ Z = CTM

2 ( 1 8 ) 

V2 

are the wave functions of the three singlet states formed 
from two electrons in <jQ or cru orbitals.27 The other two 
AO wave functions also can be expressed in terms of 
\p2v, ^Tv a n d ^ z : 

^ ( H e - H e + + ) = ^ A = (*N+rf*v+Vz)/2 

^ ( H e + - H e + ) = ^ B = (*N-*Z)/2. 
(170 

These equations are readily solved for the MO functions 
in terms of the AO basis: 

*N = (*AA+*BB+yR*AB)/2 

^ V = (PAA-VBB)/^ 

*z= &AA+*BB-^2*AB)/2. 

(19) 

The transition from AO to MO states is shown in 
Fig. 4. For fast collisions, the final wave function can be 
obtained by expanding ^BB in the MO basis set (17) and 
taking into account the phase relations. Then, ig
noring a common phase factor, one obtains 

where 
{Ea)NV 

0 i = -

02 — -

V 

(Ea)Nz 

-dR, 
-x v 

(20) 

(21) 
€Z—€N 

-dR. 
V 

27 A fourth state &AB, with the orbital wave function 
{<rg<Tu—(ru(rg)/2 is a 32 t t

+ state. Since the initial state in cases of 
experimental interest is almost always a singlet state and since 
singlet-triplet transitions can be neglected in fast collisions, 
triplet states have been neglected throughout this paper. 

The value X in the limits of integration indicates that the 
interaction takes place within the region of molecular 
binding. These integrals may be estimated from expres
sion (9). Since X[(He)*+]=0.74 and X[(He)2

3+] 
==|X[(H)2

+]==0.74 also, it is reasonable to assume 
X[(He)2

+ +]=0.74. Now 

€z(0) = e[Be++(2£) 2]=-3.4, 

€v(0) = elBe++(ls,2p)= - 9 . 1 , 

€i\r(0) = e[Be++(ls)2]== -13 .65 . 

(See Fig. 4.) Then (Ea)Nv=6.7y (Ea)NZ= 15.2. 
Expanding ^fmai back into the original AO basis and 

taking the squares of coefficients, one obtains 

P2=PBB=U3+2 COS(0I)+COS(0 2 ) 

+ 2 cos(0 2 -0 i )} , 
P i = P ^ s i n 2 ( | 0 2 ) , (22) 

PO=PAA=U^-2 COS(0I)+COS(0 2 ) 

—2 cos(02—0i)}. 

Very roughly, for (He)2
++ , (Ea)NV~\{Ea)NZ\ from (21) 

02=20i. Using this simplification, (22) reduces to 

P 2 = C O S 4 ( | 0 i ) , ^ 2 

Pi sin2(|0i), (23) 

Po=sin 4 ( |0 i ) . 
(See Fig. 6). 

The large separation of the energy curves for (He)2
+ + 

(Fig. 4), indicates a more pronounced tendency to 
follow the adiabatic potential curves than in the case of 
(He)2

+. Thus, one would expect relatively heavy damp
ing for (He)2

++. Nevertheless, enough oscillations should 
be present to test the theoretical predictions. 

IV. CONCLUSIONS 

I t has been seen that the observed phenomena of wide 
angle resonant charge exchange scattering in multi-
electron systems cannot be accounted for by an adia
batic theory. This has been circumvented in this paper 
by assuming a quasiadiabatic basis set of MO wave 
functions. This independent-particle formulation is 
adequate for discussion of resonant charge exchange and 
has been used to predict the results of experiments on 
new systems. On the other hand, for small angle 
scattering the impact parameters usually are large 
enough so that the adiabatic approximation still may 
be valid. 

The necessity of a three state approximation (Sec. 
IIIC.3) appears to be quite general in the case of charge 
exchange involving two s electrons. 

I t should be pointed out that the present treatment 
has validity over a limited range of ion velocities 
(»«0.1-1). At higher velocities, diabatic transitions 
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between MO's take place. These account for breakdown 
of coherence (Sec. IIC), formation of multiply charged 
ions (Fig. 1), and charge exchange in nonresonant 
systems, such as H e + H + . 3 At lower velocities, the 
collisions become truly adiabatic. A discussion of these 
phenomena is outside the scope of the present treatment. 
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APPENDIX 

Damping Effects 

This section compares the idea of damping effects 
(Sec. IIB) with the Landau-Zener treatment of curve 
crossing to show the close relation between the two 
points of view. 

As a simplified model for damping, consider the inter
ference between a single state of energy es and a band of 
states of energy ea and width 2T. The probability of 
charge exchange due to coherent interference is given by 
an expression of the general form PA— \CA\2, where 

res-ea+T 

Then 

PA 

CA 

1 

e~ieTde 

=cH 
± 2r Jtr^_T 

sin2(lV) 2 s i n ( r / ) c o s ( [ e , - e J 0 

1 (Al) 

(vty Tt 

This function is shown in Fig. 7. I t can be seen from 
(Al) that the oscillation in PA is between the envelopes 

PA(±) = -\ 
41 

1±-
sin(n) 

Tt I- (A2) 

and the amplitude of oscillation is given by PA(+) 
—PA{—) = sin (17)/(17). As a measure of the mean 
decay time, one can take the value of the integral 

Jo 

' sin(a:) 7r 
dx=- or TA/=7r/2=1.57. 

x 2 

This is to be compared with the uncertainty principle 
A E A T « 1 . 

The process can be seen from a quite different point 
of view of the Landau-Zener formula.16 The initial wave 
function contains a mixture of ^ s a n d ^ a . At the crossing 
point (Fig. 2) there is a probabilitv 0- — P) of an 

FIG. 7. Probability of coherent interference of a single 
state with a band of states of width 2I\ 

adiabatic transition to a mixture of the states s' and a. 
In such a mixture interference is absent. At the second 
traversal of the crossing point the same phenomena 
recur. Again a mixture of states a and s' fails to inter
fere, so that the over-all probability of constructive 
interference is equal to the probability of two successive 
diabatic transitions,28 P 0 = P2. P is given by the Landau-
Zener formula16: 

P=e~w, 
where 

2ir{Hssly 
w= , (A3) 

fiv(d/dR)(e 0 
which becomes 

2T(Hss>)2/v(d/dR)(es-es<) ina.u., (A3') 

Hss> is the off-diagonal matrix element connecting states 
s and sf, and v the collision velocity. I t is reasonable to 
assume that Hss> causes the splitting between the states 
at the crossing point. Then AE—2HSS'. Furthermore, it 
is reasonable to assume 

and 

Then 

If J£«X, then 

AE~2T 

(es—€5')~ (es — ea)m*x.e-Rlx. 

d(es—es>) 1 
~ ~ \€s €a) max£ 

dR X 

•B/\ 

w = 2ireT2X/v (es—ea) max. 

Taking the collision time T/2~\/v, 

P0=e-^ exp[ -27rer 2 rX/(e s -€ a ) m a x ] . 

28 This statement is not strictly correct. Inclusion of quantum-
mechanical phase factors introduces oscillatory terms in the 
expression for the probability of two successive events. I t can be 
shown that these terms have important bearing on the theory of 
asymmetric charge exchange. [See W. Lichten, Bull. Am. Phys. 
Soc. 8, 393 (1963).] Nevertheless, in the present application, these 
terms can be ignored. 



238 W I L L I A M L I C H T E N 

Taking the approximate relation 2r/(es—€a)max~0.1 
(see Fig. 4). 

p _ g—O.leTiTT— e~0.8bTT^ 

The mean life for decay is given by the relation 
0 . 8 5 r r = l or r r = 1 . 2 , which again agrees with the 
uncertainty principle AEAT—1. 

I. INTRODUCTION 

TH E theory of multiple scattering of a charged 
particle passing through matter has been worked 

out by Williams,1 Goudsmit and Saunderson,2 Moliere,3 

Snyder and Scott,4 and Lewis.5 The formulation of the 
theory as done by Moliere,3 and Goudsmit and Saunder
son2 has the very interesting feature that the differential 
law of scattering enters into the theory of multiple 
scattering only through a single parameter, the screen
ing parameter Xa. Bethe6 has established that the theory 
of Goudsmit and Saunderson2 has a close quantitative 
relation to that of Moliere.3 The theory of Moliere has 
been widely applied in the interpretation of experi
mental results. However, Nigam, Sundaresan, and Wu7 

have pointed out that the formula given by Moliere 
for the scattering cross section of a charged particle by 
an atom in his theory of multiple scattering is incon
sistent. This is because Moliere's calculation of the 
scattering amplitude includes an inconsistent expansion 
of the phase shift in powers of «i=zZ$/fiv. Nigam et al.,7 

use Dalitz's8 relativistic expression for the single scat
tering cross section derived in the second Born approxi
mation for the scattering of a spin-half-charged particle 
by the screened Coulomb field of an atom, and the dis-

* Work performed, in part, under the auspices of the U. S. 
Atomic Energy^Commission. 

1 E . J.!WilliamSj Phys. Rev. 47, 568 (1935); Proc. Roy. Soc. 
(London) A169, 531 (1939); Phys. Rev. 58, 292 (1940). 

2 S. A. Goudsmit and J. L. Saunderson, Phys. Rev. 57,24 (1940); 
and 58, 36 (1940). 

3 G. Moliere, Z. Naturforsch., 2a, 133 (1947); 3a, 78 (1948). 
4 H . Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949). 
5 H. W. Lewis, Phys. Rev. 78, 526 (1950). 
«H. A. Bethe, Phys. Rev. 89, 1256 (1953). 
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115, 4911(1959). 
8 R . H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951). 

Thus, two apparently quite different approaches 
agree. This tends to reinforce the conclusion that adia-
batic potential curves are not important in the theory 
of fast atomic collisions. I t would be interesting to find 
out if a more refined collision theory would bear out 
these arguments. 

tribution function for multiple scattering was calcu
lated in powers of a\ in a consistent manner. They ob
tained satisfactory agreement with the experimental 
results of Hanson, Lanzl, Lyman, and Scott9 for the 
1/e widths of the distribution function for the scattering 
of 15.6 MeV electrons by Au and Be. Further the work 
of Nigam, Sundaresan and Wu,7 (hereafter to be re
ferred as paper A), in contrast to Moliere's3 theory, 
predicts different screening angles for electron and posi
tron scattering and consequently, different distribution 
functions for multiple scattering. Nigam and Mathur10 

have applied the results of paper A and calculated the 
difference in multiple scattering of electron and positron 
and found good agreement with the experiment of 
Henderson and Scott.11 

The method of estimating the energy of fast ionizing 
particles in photographic emulsion by measuring the 
deviations in their tracks produced by multiple scatter
ing was first suggested by Bose and Choudhuri.12 

Gottstein, Menon, Mulvey, O'Ceallaigh, and Rochat13 

have shown that the mean deviation of a charged par
ticle passing through a given layer of matter is directly 
proportional to the charge and inversely proportional 
to the product (momentum X velocity) the constant 
of proportionality depending on the composition of the 
scattering medium. They calculated the Scattering 
constant" using Moliere's theory. In this paper, the 
mean angle of multiple scattering, spatial and pro-

9 A. O. Hanson, L. H. Lanzl, E. M. Lyman, and M. B. Scott, 
Phys. Rev. 84, 634 (1951). 

10 B. P. Nigam and V. S. Mathur, Phys. Rev. 121, 1577 (1961). 
11 C. Henderson and A. Scott, Proc. Phys. Soc. (London) A70, 

188 (1957). 
12 Bose and Choudhuri, Nature 147, 240 (1941). 
13 K. Gottstein, M. G. K. Menon, J. H. Mulvey, C. O'Ceallaigh, 

and O. Rochat, Phil. Mag. 42, 708 (1951). 
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The expressions for the mean spatial and projected angles of multiple scattering are obtained using the 
distribution function for multiple scattering derived by Nigam, Sundaresan and Wu, and compared with 
those of Moliere. It is shown that Moliere's calculations involve the approximation of Xc\/B —» 0. The dis
tribution function of Nigam et al. is found to give correction terms which are proportional to powers of 
XeWB and XC^B \n{Tr/Xc^B). 


